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Model for Colloidal Fouling of Membranes

P. Bacchin, P. Aimar, and V. Sanchez
Lab. de Génie Chimique et Electrochimie, 31062 Toulouse, Cedex, France

A proposed theoretical model describes colloids deposition on a membrane surface
accounting for surface interactions. 4 mass-transfer equation links the deposition
rate to hydrodynamic conditions (permeation and tangential flow through a bound-

existence of a critical Slux, .., for ultrafiltration, reverse osmosis, or microfiltration
of large-size colloids as:

Some of the trends observed when processing protein solutions are explained by this
model. Previous experimental data for various colloids or our data with clay
suspension in the presence of electrolytes are also compared to predictions of our
model. It explains the “fux anomaly’’ Sor particle sizes between 10 nm and 1 um.

Introduction

Microfiltration (MF), ultrafiltration (UF), and reverse os- limiting permeate flux in ultrafiltration of latex particles of
mosis (RO) are pressure-driven membrane separation processes different surface charges. It is also wel] known that pH, which
whose major limitation is fouling. Solutions treated by these changes protein charges, affects the efficiency of ultrafiltration

Systems are often composed largely of colloids. The term col- (Fane et al., 1983) and the extent of fouling (Aimar et al.,
loid covers various species with particles smaller than § um, 1986). Our experiments show that the kinetics of deposition
stable in suspension or charged macrosolutes such as proteins. of a colloidal clay on an ultrafiltration membrane depends on

For a colloid, surface electrostatic interactions play an im- the suspension salinity. This article explains such a behavior

portant role. With diffusion, these interactions control the rate by a theoretical model and quantifies the contribution of sur-
of coagulation (Verwey and Overbeek, 1948) and the variation face interactions on transport phenomena to the membrane.
in diffusivity with concentration (Anderson et al., 1978). The
physical adsorpti(?n of a.solute on a sur.face.is a!'so the con- Theoretical Background
sequence of such interactions together with diffusion and hy-
drodynamics (Rajagopalan and Kim, 1981). (The concepts of Interactions between colloid surfaces involve essentially three
deposition, adhesion, and adsorption are similar; the first term different types of forces [DLVO (Derjaguin, Landau, Verwey,
seems more appropriate for colloidal particles and the third Overbeck) theory): electrostatic double-layer (EDL) interac-
one for much smaller species such as proteins. All these words ~ tion, van der Waals attraction, and Born repulsion. These
describe results of the competition between attractive forces, forces .depend on the distance between the surfaces and elec-
electrostatic interactions, and transport by diffusion.) Thus, trostatic double-layer interactions, and depend on surface
one can think that during filtration of a colloidal suspension charge (or potential) and ionic strength. van der Waals: forces
through a thin film, surface interactions play a significant role predominate at small and large interparticle distances, whereas
on the control of materia] deposition (fouling). double-layer repulsion dominates at intermediate distances. In
McDonogh et al. (1989) Teport important variations in the general, the interaction potential profile shows a potential bar-
rier which prevents particles from coagulation. The presence
of electrolytes in the suspension reduces this barrier; This leads
Correspondence concerning this articie shoutd be addressed to P. Aimar. to deﬁning a critical concentration in electrolytes for coagu-
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POROUS
SURFACE

Figure 1. Colloidal particle suspended in a fluid per-
meating through a porous surface in the pres-
ence of a tangential flow.

Factors influencing the transport of the particle are the flux of
permeation, J, the dif! fusion coefficient, D, the interaction energy
between the particle and the wall, ¥, and the tangential flow, U,
creating the boundary layer of thickness, 8.

lation representing the transition {curve b in Figure 1) between
stability (curve a) and rapid coagulation (curve ¢). This ap-
proach, however, does not take into account transport by
diffusion. More rigorous works describing coagulation solve
the transport equations with diffusion and interactions induced
migration for two spheres. Hence, Verwey and Overbeek (1948)
define the rate of coagulation as the rate of diffusion divided
by a stability ratio W, such that:

WC=2~a-g T — (1)
2a

where Vis the interaction potential energy between two spheres
of radius, a, with a distance between their centers, R. W, is a
measure of the effectiveness of a potential barrier in preventing
the particle suspension from coagulating or is the reciprocal
of a collision efficiency. A value of W, larger than 10° char-
acterizes a stable system (insignificant coagulation) and a
stability ratio close to 1 describes a fast coagulation (Smolu-
chowski, 1917) or an unstable system.

Fouling of a membrane is the result of a combination of
solute or particles mass transport to the membrane (deposition)
and of solvent transport through the membrane and the deposit
layer (filtration): The experimental stationary flux for which
there is no solute deposition is the consequence of the first
mechanism. The film model describes this stationary state in
the case of a membrane totally impermeable for solute by
considering a balance across a hydrodynamic diffusion layer
between diffusion from the membrane to the solution and
convection. This model tends to underestimate the flux ob-
tained experimentally in the case of particles larger than 0.1
um. This problem, emphasized by Green and Belfort (1980),
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is called “‘colloidal flux anomaly.” Several phenomena are
invoked to explain this anomaly: shear induced particle dif-
fusion (Zydney and Colton, 1986; Romero and Davis, 1988)
or lateral migration (Porter, 1972; Green and Belfort, 1980).
These models, essentially based on hydrodynamics, do not
predict the changes observed in filtration with the physico-
chemical properties of suspension (such as pH or ionic strength).
On the other hand, particle deposition on collectors, also very
dependent on attractive (barrierless deposition) or repulsive
surface interactions (barrier controlled deposition) (Adam-
czyk, 1989) is described by numerous models (Jia and Williams,
1990) accounting for specific surface interactions between the
particles to be deposited and the charged solid-liquid interface.
In the case where interactions between particles in the bulk
can be neglected (This assumption implies that the concentra-
tion does not affect physicochemical properties of the suspen-
sion. To overcome this assumption, the full Fokker-Planck
equation must be used.), the governing equation is the con-
tinuity equation (Eulerian approach):

dc
S TN=0 )

where ¢ is the colloid concentration, Q is the bulk reaction

term, and N is the mass flux. The steady-state equation, in the
absence of bulk reaction is then:

YN=0 3
The mass flux can be written as follows as a sum of fluxes

due to liquid flow (a), diffusion (b), and interactions induced
migration (c):

D
N=uc—D-Ve——— ¢ VV
kT

(@) (b) (©)

4

Here, D is the diffusion coefficient, ¥V is the interaction po-
tential between the particle surface and the collector, k is the
Boltzmann constant, T the absolute temperature, and u the
hydrodynamic velocity of the fluid. The boundary condition
mostly used is the ‘‘perfect sink’’ condition originally applied
by Smotuchowski (1917) to describe fast coagulation and later
by Verwey et Overbeek (1948) to derive Eq. I:

x=0 ¢=0 (5

Thus, the basic assumption is that all particles arriving at the
collector surface are irreversibly and quickly captured and
disappear from the system. Systematic studies of the influence
of the shape of interaction profile on particle deposition ki-
netics have been made by numerical computations of transport
equations on rotating disc (Rajagopalan and Kim, 1981) or on
a stagnation point flow (Chari and Rajagopalan, 1985).

A lot of models developed considering surface interactions
describe deposition of colloids on different types of collectors.
To our knowledge, however, this approach has not been ap-
plied to the calculation of mass transfer onto a porous surface,
such as a membrane in operation.
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fiodel Development

Our model uses the Eulerian approach based on the conti-
nuity equation (Eq. 3). The transport equation (Eq. 4) is mod-
ified by considering a fluid velocity near the interface due to
the sole permeate flux, J {term (a) equal to Jc). The tangential
flow is taken into account to calculate the diffusion layer
thickness for any point of the membrane surface (Figure 1).
If we consider that all the mass transport occurs within the
limits of the hydrodynamic layer then:

x=8 c=¢, 6)

A first boundary condition is given by the perfect sink model
(Eq. 5) applied to the moving solid-liquid interface constituted
by the cake top surface. Considering a constant diffusion coef-
ficient, this equation system (Egs. 3, 4, 5 and 6) leads to the
following analytical solutions for concentration profile and
rate of mass transfer:

c=cyre KT D —— Q)
te—t—x
e kT D dx
0
J8
D.cy-e
Nem——— ®)

Calculations of ¢ and N by these stiff equations are rather
complex. A simplification of Eq. 8 is possible by considering
that the surface interaction occurs across a layer (a few na-
nometers) thinner than the hydrodynamic layer (1-10 um). The
mass-transfer Eq. 8 can then be simplified and written in a
dimensionless form:

1

Sh= %)
KE e~Pe+_1_ (l _e—Pe)
) Pe
with
N-8
Sh=
Doa (%92)
J-8
Pe=— (9b)
w Y
VB:S (e*T—1)-dx (9¢)

0

The mass transfer, Sh, is expressed as a function of hydro-
dynamic conditions, Pe and 8, and of physicochemical prop-
erties ¥V, representing the potential barrier induced by the
surface interactions.
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Definition of stability for deposition, W,

A limit to general Eq. 9 is the case of a Pe number close to
zero (nonporous surface or negligible applied pressure). The
deposition or the adsorption of colloids on such a surface with
a tangential flow is then given by:

Sh= (10)

Mass transfer is then limited by a combination of a diffusion
resistance and of a resistance to transport induced by inter-
actions. In a dimensional form, the potential barrier reduces
the flux by an apparent increase in the diffusion layer thickness
(This equation is similar with the Ruckenstein and Prieve (1973)
analysis of colloid deposition on a plane under parallel flow
conditions. Thus, the dimensionless number, V/8, can be
linked with a Damkohler number as the ratio of a surface
reaction rate defined by these authors on a diffusion rate,
Vg/6=1/Da):

D
N= . 11
5+ Vg G an

The rate of deposition can be written as a mass transfer by
diffusion, D(c,-0)/8, divided by a ratio, W,, characterizing
the stability of a single particle with respect to the membrane
surface swept by a cross flow:

W,=1+-2

3 (12)

Equation 12 then defines a criterion for the effectiveness of a
potential barrier, Vj, and of hydrodynamics, 8, in preventing
the suspension from deposition. As for coagulation (Eq. 1), a
value of W, around one (in the absence of interaction: ¥;=0)
corresponds to deposition only by diffusion, whereas a large
ratio (large repulsion interactions: ¥y >>0) represents cases of
negligible deposition. The stability decreases for a decreasing
cross-flow velocity in the case of repulsive interactions V>0
(shear enhanced particle removal) and for increasing velocity
in the case of attractive interactions, V<0, (shear induced
particle deposition). The stability W, (Eq. 12) can be compared
to the stability defined for coagulation, W, (Eq. 1) which can
be expressed, for large potential barriers and using Eq. 9c, as
follows:

Vg
W=1+-2 13)
Tt (

Thus, if one assumes a boundary layer thickness such as 1 um,
a particle with a diameter of I um would have the same value
of W,.and W,. On the other hand, a solute of 10 nm in diameter
(such as a protein) in a boundary layer of 1 um has a stability
W, 100 times smaller than its stability with respect to coagu-
lation. Such a solution could then be stable in solution but
prone to deposit or adsorb on a surface.
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Figure 2. Deposition, Sh, vs. convection, Pe, for differ-
ent stability values, W,.

Bold lines represent fouling paths for a macromolecule (M)ora
colloidal particle (P) (data from Table 1).

Discussion of the Model

The combination of the transfer equation (Eq. 9) and of the
relationship defining the stability, W,, (Eq. 12) leads to:

Sh= ! (14)

1
(W,— I)e‘PE+E (I-e= %)

Equation 14 has been plotted in Figure 2 for different values

of the stability, ¥,. For low diffusivity and a negligible po-’

tential barrier (¥3=0and W,=1), all the material brought by
convection is deposited on the surface: this is dead-end filtra-
tion (SA=Pe). In the case of attractive interactions (V<O
and W,<1), the transfer is larger than the mass brought by
convection (Sh>Pe). This difference is due to physical ad-
sorption which gains more and more importance as convection
becomes smaller (decreasing Pe). During filtration, the at-
tractive interactions case can only be a transient one as the
membrane is soon covered by a particle layer. For a repulsive
potential barrier (¥;>0 and W,> 1), which is often the case
in filtration (interaction between suspended particle and cake
of particle), the Sherwood number is smaller than the Pe num-
ber: the repulsive interaction creates an additional resistance
to mass transfer towards the surface. This resistance decreases
when the Pe increases. For large Pe numbers, Sh=Pe. The
transition zone between Pe for which S# < Pe and Pe for which
Sh= Pe is sharper when the potential barrier increases. For
large values of W, it exists a critical value of Pe below which

the potential barrier makes the deposition almost impossible
(Sh=0) and above which fouling is maximum (Sh = Pe). Such
a phenomenon is common to all collectors (Chari and Raja-
gopalan, 1985), as well as to coagulation. In the case of fil-
tration with important repulsive interactions this trend would
lead to consider, for given hydrodynamic conditions, a thresh-
old flux below which no fouling would occur.

Immplication for membrane fouling

Typical values of Peand V,/8 obtained for two very different
classes of colloids (a protein, bovine serum albumin (BSA),
and a particle of larger size, bentonite) are presented in Table
I. The brownian diffusion for particles is smaller than for
small solutes like BSA and thus, for the same permeate flux
and hydrodynamic conditions, the Pe number is much larger
for the particle than for the protein. The size has an important
effect on the surface interaction between particles, the potential
barrier for a particle being several orders of magnitude larger
than for the protein, for the same surface conditions. The
dimensionless numbers Pe and ¥,/5 are then helpful in com-
paring different colloids from a stability and fouling point of
view. According to Eq. 9, once these values are known, it is
possible in principle to determine the mass transfer, Sh. Sh/
Pe is the ratio of mass transfer, N, to convection, Jc. This
number can be considered as an index of the “‘fouling poten-
tial’’: a value of 1 characterizes a fouling situation as observed
in dead-end filtration, a ratio of 0 corresponds to negligible
fouling and a ratio larger than 1, fouling enhanced by ad-
sorption. Figures 3 and 4 present contours of this ‘‘fouling
potential” (constant Sh/Pe) in a graph representing the sus-
pension characteristic, W,, (Eq. 12) vs. the Pe.

In the “‘particle’’ case (large Pe and W, as in Figure 3), the
transition between ‘‘no fouling’’ and ‘‘dead-end fouling”’ zones
is very sharp and monotonous. An analytical approximation
for the boundary of the no-fouling condition was found to be:

v
Pe.,=In (f) (15)

This equation in good agreement with iso-fouling curves (Fig-
ure 3) leads to the determination of a threshold flux below
which no fouling occurs. This flux is a function of the prop-
erties of the colloid and of the suspension, ¥, and D, and of
the hydrodynamics, 8. The concept of threshold flux has often
been discussed. Cohen and Probstein (1?86) have reviewed the
major mechanisms describing such a phenomenon: back flux

Table 1. Estimated Dimensionless Numbers in Eq. 9 for Two Very Different Colloids: Clay and Protein

Colioids a (nm) D*(m¥/s) 8" *(m) Ve'(m) pe Vo/5
“Particle”’
Bentonite 350 6.3x10°" I1x10-¢ 1x10*°"° 200 Ix10%'®
‘‘“Macromolecule’’
BSA 3.6 6x107" 4.3%x107¢ 1x107* 10 20

“Calculation of diffusion coefficient by Stokes Einstein law, D=kT/6xpa.

°

hydraulic diameter d;=5x 10™* m and the membrane length L=0.3 m.

“Calculation of - diffusion layer thickness by Lévéque equation: d,/8=1.62 [Re-Sc (d,/L)]*¥ with Re=800, Sc=u/pD and p/p=1x10"% (Pa-s-m’/kg), the

TCalcu}ation of the potential barrier (Eq. 9¢) with unretarded van der Waals interaction (Hamaker constant=1x 10"% J): for bentonite, constant charge double
layer interaction (Wiese and Healy, 1970) with 7=0.003 Mand {= —40 mV; for BSA, approximation of Stitger and Hill (1959) with /=0.003 M and charge - 6.8

in electronic charge as used by Anderson et al. 1978).
1Calcutation of Peclet number with initial permeate flux of 6.3x 107° m/s.
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Figure 3. Stability, W, vs. convection, Pe, for different
fouling potentials, Sh/Pe, (particles case).

Equation 15 (@) is a good approximation for the limit of the no
fouling condition. Bold line represents the simulated fouling path
during particle filtration.

by diffusion, lateral migration, and shear induced diffusion.
These existent theories are compared to interaction enhanced
migration (present model) in Table 2 and in Figure 5 as a
function of solute size. Interaction enhanced migration (Eq.
15) gives larger threshold fluxes for colloids with size between
0.1 and 10 um than classical models and then can provide an
explanation for the ‘‘colloidal flux anomaly.”’ This mechanism
can explain the experimental observation by Cohen and Prob-
stein (1986) of an essentially constant threshold flux for reverse
osmosis of colloidal suspension (ferric hydroxide RO with size
between 0.1 and 0.5 um represented by black squares in Figure
5). For particles larger than 10 ym, hydrodynamic mechanisms
seem the most important and for colloids smaller than 0.1 pm,
Brownian diffusion induces a back flux larger than interaction
enhanced migration but can also lead to adsorption.

In the case of macromolecules, the isofouling graph (Figure
4) is more complex than before. High diffusivity and small
potential barrier make the adsorption mechanism possible.
Thus, there are now three different zones (adsorption, dead-
end filtration and no-fouling conditions) and a large transition
area between these zones. An important point is that for low

10000 7
nro fouling condition //
Wa /
0.01 ]
1000 —\ /
05
00+
M
G 099
0T~
e
—
- dead-end filtration
1 + +
0.1 [ 10 100
adsorption 2 10t Pe

G

Figure 4. Stability, W, vs. convection, Pe, for different
fouling potentials, Sh/Pe (macromolecules
case).

Bold line represents the simulated fouling path for simulation
during macromolecule solution filtration.
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Table 2. Mechanisms Explaining a Critical Flux in UF, MF
or RO of Large Colloids

Expression

Ja=D/8=(1/8)(kT/6wpa)

Shear Enhanced Diffusion Jo=DJ/8=(1/8) (0.2Uc*/d,)
Lateral Migration Ji=4U /vd?

Interaction Induced Migration j,= (D/8)-In(V,/8) (This Work)

Mechanism

Brownian Diffusion

values of W, (< 100), there is no stationary flux predicted here.
A fraction of the mass transport (adsorption, Eq. 10) is in-
dependent of Pe, and then gains more and more importance
in Sh/Pe as Pe decreases. For W large enough, Figure 4 shows
a no fouling zone. This model accounts for the variations in
permeation flux for protein ultrafiltration observed by Fane
et al. (1983) at different pH and ionic strengths as V, depends
on the surface charge and ionic strength. For example, a min-
imum of threshold permeate flux, and a maximum fouling,
observed at the isoelectric point cannot be predicted by the
variations in osmotic pressure with pH. It can be explained by
weaker interaction induced migration (present model) when
the molecule net charge is near zero, as well as by a lower
solubility at [EP (gel model). .

Some properties of proteins, however, are not yet accounted
for by the present model (osmotic pressure, solubility, hydro-
phobic interaction, or denaturation). Furthermore, if concen-
tration plays a role on the rate of membrane fouling in Eq.
16, it has no direct effect on the steady state, as shown by Eq.
15. This comes from the fact that interactions between particles
in suspension have been neglected. Then, an improvement to
the model, which is for the moment more appropriate for the
description of dilute suspensions of large colloids, can be the
study of the influence of colloid concentration on physico-
chemical properties (stability and diffusion) of the suspension
and then on fouling.

1073
JC!’IY
{m/s}

104

109

3 2 -1 0

log 23(!0'5m)

Figure 5. Critical fluxes predicted by different mecha-
nisms vs. particle-size: Brownian diffusion, ji,
lateral migration, j, shear induced diffusion,
Js and interaction induced migration, j, (Table
2).

Symbols represent threshold fluxes observed during ferric hy-
droxide RO by Cohen and Probstein (1986). Interaction induced
migration, j, (Eq. 15) calculated with constant potential double
layer interaction (Wiese and Healy, 1970) and unretarded van der
Waals attraction: ionic strength 0.001 M, Hamaker constant
{x10"® J and zeta potential 50 mV.
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Simulations of membrane fouling

Colloidal fouling of MF, UF and RO membranes is a com-
bination of a transfer mechanism to the surface and of a
filtration mechanism through the deposited material and
through the membrane. To describe permeate flux in such
processes, the transfer equation (such as Eq. 9) is coupled with
a cake filtration law presented here in a dimensionless form:

Pe, AP
Pe= lpm————— (16
S[Sh-dt A ey 19
1 0
S T TR
2‘{\]—3 €0

2

Here, ¢ fin is the characteristic time of dead-end filtration for

which the initial permeate flux has been divided by V2. Equa-
tion 9 allows to calculate the mass transport for a permeate
flux at a given time and for a boundary layer thickness, which
depends on the location on the membrane surface., Simulation
of membrane fouling needs iterative calculations of Eqs. 9 and
16 over the membrane surface and over the process duration.
The major assumptions made to derive this model are:

° Cake filtration (no pore blocking) with homogeneous cake
properties (no compressibility across the cake thickness) and
without osmotic pressure.

° No difference made between the deposition of the first layer

(membrane/particle interaction) and further layers (particle/
particle layer interaction).

® No effect of concentration on interactions and on diffusion.
It is clear that these assumptions are of importance for the
simulation of ultrafiltration of protein solutions and have to
be overcome to obtain reliable predictions. These simulations,
however, allow the effect of the suspension properties on the
kinetics of deposition during membrane fouling to be studied.
Different simulations of filtration are discussed below for two
different colloids.

In the case of particles (data from Table’ 1), the simulation
shows a stationary flux rapidly obtained after a period of dead-
end filtration (Figure 6). This is easily explained by the fouling
path, P, resulting of this simulation in Figure 3. In this figure,
the beginning of a membrane operation is characterized by a
point (stability and Pe number). As the run proceeds, the point
shifts horizontally (constant W;) from right to left (Pe de-
creasing with membrane fouling). For the particle filtration,
the run starts in the zone where the fouling potential, Sh/Pe,
is equal to 1 (dead-end filtration) and then rapidly reaches the
“‘no fouling’’ zone (stationary flux). This trend is also illus-
trated in Figure 2 where the fouling path, P, begins on the
line, Sh = Pe, and soon after becomes vertical (almost constant
Pe: stationary flux). Furthermore, this threshold flux due to
a migration induced by interaction, independent of the applied
pressure, explains the trend observed when increasing the pres-
sure in UF or MF (Gourgues et al., 1992). Once a stationary
flux has been reached, a stepwise increase in pressure increases
the permeate flux: the operating point in Figure 3 gets tem-
porarily away from the stationary flux curve and falls into the
dead-end filtration zone; soon the flux diminishes again until
the same stationary flux has been reached. The “no deposi-
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Figure 6. Variation in permeate flux vs. time for typical
particles suspensions and proteins solutions
(from Table 1).

tion”’ conditions observed by Gourgues et al. (1992) are also
predicted by the present model as mentioned before.

In the case of macromolecules, simulation of solution fil-
tration (Table 1) shows no steady-state, but a slowly declining,
flux (Figure 6). This is due to the fact that the fouling path
(M in Figure 4) approaches an adsorption zone, which induces
a continuous cake growth. This can also be seen in Figure 2
where the fouling path for this simulation (M) stays near the
line Sh= Pe (deposition always important as compared to Pe).
This simulation is in good agreement with observations made
during UF or MF of protein solutions, which are generally
characterized by a continuous flux decline.

Application of the Model
Ultrafiltration of latex with different surface charge
McDonogh et al. (1989) performed experiments with latex

particles (¢=12, 1 nm) of different zeta potentials and under
various hydrodynamic conditions. They show that the limiting

ot
(Vm2h} -

4 19 20 30 40

zeta potential (my}

Figure 7. Critical flux, J.4, vs. zeta potential for various
Reynolds numbers.

Symbols represent experimental data with latex (McDonogh et
al., 1989) and lines calculations with Eq. 15. Calculations with
constant potential double layer interaction (Wiese and Healy,
1970) and the unretarded van der Waals attraction and with data:
a=12.1 nm, ionic strength-0.001 M, Hamaker constant /x 10~ 2
J and hydraulic diameter d, =3.22%x107* m.
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Figure 8. Potential barrier, V; vs. ionic strength for a
sphere plane configuration.

Calculation with constant charge double layer interaction (Wiese
and Healy, 1970) and the unretarded van der Waals attraction,
as detailed in Table 1. Value of stabilities, W, (Eq. 12) and W,
(Eq. 13) with §=1.5x 107* m and a=350 nm.

UF flux increases when the particles charge increases (Figure
7). Equation 25 and calculations of interactions (data in legend
of Figure 7) allow the observations of these authors to be
calculated. Variations in limiting flux with surface charge, as
well as with hydrodynamic conditions, are in good agreement
with experimental data as shown in Figure 7.

Ultrafiltration of bentonite with different salt concen-
trations

The model was also applied to experiments performed in
cross-flow UF of clay (bentonite) with various concentrations
of electrolytes. The particles have a mean diameter of 0.7-um
and a —40-mV zeta potential, constant with pH and ionic
strength. At low ionic strength, bentonite is stable in suspension
but a concentration of 1072 M in KClI leads to a fast coagu-
lation. This critical coagulation concentration c.c.c. is com-
parable to the one obtained by calculation of stability W, (Eq.
1) in Figure 8.

Suspensions are made with 0.3 g/L of bentonite in a saline
KClI solution (same procedure as Gourgues et al., 1992). The
parameter is the concentration of KCI in the suspension, the
other operating conditions being constant (applied pressure
100 kPa and average tangential velocity 0.088 m/s). The mem-
branes are outer skinned hollow fibers with a cutoff of 300
kDa (impermeable to this colloid) and have a water permea-
bility of 5 x 107! m/(s-Pa). The shell is 17.8 mm in hydraulic
diameter and contains 24 hollow fibers spaced enough for
hydrodynamic interactions between two fibers to be neglected.
Experiments have been performed in a unit allowing contin-
uous measurement of the permeate flux and of the bulk con-
centration in retentate. Simple mass balance then allows the
amount of particles deposited on the membrane to be worked
out (Gourgues et al., 1992). These measurements allow the
calculations of the specific resistance of the cake, «, and of
the kinetic deposition parameter, J;, to be performed.

Circulating the suspension in the UF loop without permea-
tion reveals a bulk concentration reduction, explained by an
adhesion mechanism. Such experiments have been performed
at various ionic strengths to determine a kinetics constant, X,
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Figure 9. Adhesion constant K{Eq. 17) vs. KCI concen-
tration.
(—+—+) experimental data; (

) calculation (Eq. 18).

as adhesion is generally described by a first-order reaction
(Tamal et al., 1982):

_x 7
a ne an
This mechanism, once quantified, has been accounted for in
calculating the critical flux.

Adhesion appears for a salt concentration around c.c.c.
(Figure 9). This rapid mechanism is often observed and allows
a critical deposition salt concentration to be determined (van
de Ven, 1989). These variations are modeled by Eq. 11 derived
for deposition on a nonporous surface. By combining a the-
oretical equation (Eq. 11) and an experimental kinetics (Eq.
17), one can derive the following expression:

S D
K=—:
Vo 6-W,

(18)

Assuming the ultrafiltration apparatus is a collector with the

15105
it

{m/s)

1105 1

5105 4

0 t
KO M|
0.00001 09,0001 0.001 8.0 b 0.1

Figure 10. Critical flux, J.4 as a function of KCI con-

centration.
{—-—+) experimental data; ( ) calculated data (Eq. 15)-
Vol. 41, No. 2 AIChE Journal




same properties as those of a bentonite surface give data which
are in good agreement with experimental results (Figure 9).
As can be seen from Figure 10, the other parameter of
deposition kinetics, J_, is greatly influenced by KCI concen-
tration. At low ionic strength, a large critical flux is observed.
Addition of salt results in a lower limiting flux and a larger
deposition on the membrane. For ionic strength close toc.c.c.,
this limiting flux is almost zero: the amount of material de-
posited on the surface is equal to the amount brought by
convection (dead-end filtration). This parameter, J.;, can be
compared with the value predicted by relation 15. Calculated
values (data from Table 1) show the same type of variation as
experimental data in Figure 10. The model explains reductions
in critical flux when the salt concentration is increased by
shielding the electrostatic repulsion between the cake surface
and the approaching charged particles. A quantitative agree-
ment is not achieved, but the theoretical model of a bentonite
particle as a hard sphere is certainly too far from reality to
provide exact predictions. Another model based on a platelet
geometry was tried, however this was not successful either.

Conclusions

A theoretical equation has been derived to describe the rate
of a colloid deposition to a porous surface in cross-flow con-
ditions, as a function of hydrodynamic conditions and sus-
pension properties such as diffusivity and stability. The transfer
equation shows how the concept of stability ratio of a sus-
pension is an important characteristic for membrane fouling
as well as for particle aggregation.

For filtration of large charged particles, this equation ex-
plains the existence of a threshold flux, J.,, due to interaction

induced migration:
D Vs
J==-1n| <2
cril 5 n( 6 )

where the boundary layer thickness, 8, characterizes hydro-
dynamics conditions and the particle diffusivity, D, and the
potential barrier between particles induced by surface inter-
actions V; (linked to suspension stability and to tangential
flow by Egs. 12 and 13) account for the physicochemical prop-
erties of the suspension. This threshold flux is the edge between
pure dead-end filtration (where convection overcomes surface
repulsion) and nonfouling (where surface repulsion domi-
nates). The present model predicts a higher flux than other
models in the range of colloid size 0.1 to 10 pm and might
then contribute to solve the “‘colloidal flux anomaly.”” It gives
results in good agreement with measurements on latex ultra-
filtration (McDonogh et al., 1989), ferric hydroxide reverse
osmosis (Cohen and Probstein 1986), or clay ultrafiltration
(this work).

For smaller solutes, that is, macromolecules, the model pre-
dicts a more complex situation with physical adsorption oc-
curring at low stability and low Pe number. The model predicts
the continuous flux decline observed for UF or MF of proteins,
and the variations in membrane fouling with ionic strength
and pH, although it does not yet include several important
physicochemical properties of protein solutions.
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Notation

a particle radius, L

¢ = colloid concentration, M-L ~*
¢ = bulk concentration, M-L"
dy = hydraulic diameter, L
D = diffusion coefficient, L*-T !
h = separation distance between particle and surface, L
J = permeate flux, L-T~!
Jo = initial permeate flux, L-T !
Jew = critical or threshold flux defined in Eq. 15, L-T !
N = mass flux, M-L-2.T"!
P = pressure, M-L~'.T"2
Pe = Peclet number: ratio convection/diffusion
Pe;, = Peclet number at the beginning of filtration
Pe;, = threshold Peclet number defined in Eq. 15
S¢ = Schmidt number, »/D
Sh = Sherwood number: ratio mass transfer/diffusion
t = time, T
T = temperature, K
U = velocity of fluid tangential to the membrane, L-T7!
V' = total potential energy of interaction, M-L2.T -2
Vs = value of potential barrier defined in Eq. 9¢c, L
Vs = volume of solution in UF unit, [*
W, = stability ratio of suspension with respect to deposition on a

surface in cross-flow conditions

Greek letters

a = specific resistance of the cake deposited on the membrane
(Eq. 16), T™!

d = boundary layer thickness, L

# = solvent viscosity, M-L-t.T !

p = solution density M-L ™3
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