

Formation continue

Python pour l'ingénierie des procédés

NumPy

Base N-dimensional array package

SciPy library

Fundamental library for scientific computing

Matplotlib

Comprehensive 2D Plotting

FiPy: A Finite Volume PDE Solver Using Python

≈ COMSOL

Pourquoi Python?

- Python: langage de programmation gratuit (libre de droit d'usage) facile à apprendre et à relire (point : moins rapide que Fortran ou C)
- De nombreuses bibliothèques d'outils spécialisés
 - -> équivalent de Matlab ou de Comsol
- Une communauté d'utilisateurs (forum)
- Intérêt croissant pour ce langage (des lycées à Google !)
- Un plus important sur le CV (on peut faire bien plus que du calcul)
- -> un élément différenciant pour un recrutement

Comment l'installer et l'utiliser ?

- · Le compilateur / interpréteur
 - Python : https://www.python.org
- Le langage + les bibliothèques
 - Sous windows : plateforme Canopy pour Python sous windows
 https://www.enthought.com/products/canopy/ (gratuit pour les étudiants et académiques)
 - Sous linux en installant Anaconda
- En ligne
 - https://www.pythonanywhere.com/
 - http://www.sagemath.org/fr/
- Notebook IP[y]: IPython Interactive Computing
- IPython notebook server in the cloud as Wakari, Authorea or CoCalc

Les bibliothèques indispensables

Pour le calcul

- Numpy
- Scipy
- Matplotlib

Equivalent de Scilab ou Matlab

Equivalent de Comsol

Pour le calcul différentiel

- Fipy
- Pour l'analyse d'image
 - PIL (Python Imaging Library)
- Pour le traitement de données
 - Pandas, statsmodel, Scikit-learn
- Pour le contrôle-commande
 - python-control package

Création de tableau

Caractéristiques d'un tableau a

a.shape -> dimensions

a.dtype -> type des éléments

a.size -> nombre total d'éléments

```
import numpy as np
 In [6]:
         a= np.zeros(5)
 Out[6]: array([ 0., 0., 0., 0., 0.])
 In [7]: b=np.linspace(-2,3,6)
         c=np.arange(-2,3,1)
         print b
         print c
         [-2. -1. 0. 1. 2. 3.]
         [-2 -1 0 1 2]
In [12]: d=np.array(range(10))
Out[12]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [11]: x,y=[1,2,3],[4,5,6]
         e=np.array([x,y])
Out[11]: array([[1, 2, 3],
                [4, 5, 6]])
In [20]:
         print e.shape
         print e.dtype
         print e.size
         (2L, 3L)
         int32
```


Numpy: allocation dans un tableau

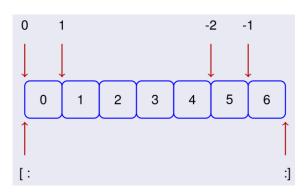
 Tableaux alloués en mémoire selon alignement C ou fortran

Indices commencent à 0

Accès aux éléments

```
x,y=[1,2,3],[4,5,6]
e=np.array([x,y])
print e
print e[0,0] # la 1er ligne et 1ere colonne
print e[1,2] # la 2eme ligne et 3eme colonne
print e[-1,-1] # la dernière ligne et dernière colonne
print e[:,1] # toutes les lignes et 2eme colonne
print e[e>2]

[[1 2 3]
  [4 5 6]]
1
6
6
6
[2 5]
[3 4 5 6]
```



Modification des éléments

```
e[1,1]=10
print e

[[ 1 2 3]
  [ 4 10 6]]

e[:,1]=10
print e

[[ 1 10 3]
  [ 4 10 6]]
```


Numpy: redimensionnement d'un tableau

Tableaux alloués en mémoire

Redimensionnement .reshape

 Pour créer, un nouveau tableau (nouvelle allocation en mémoire) utiliser.copy()

```
a= np.linspace(1,10,10)
b = a.reshape((5,2))
           4.]
           6.1
           8.]
          10.]]
                             9.1
                       7.
c=a.copy()
a[1]=200.
print a
print c
```


Numpy: opérations sur les tableaux

Somme d'éléments : a.sum() ou np.sum(a)

Somme de tableau : a+a

Multiplication: a*a

Produit vectoriel ou matriciel : np.dot(a,a)

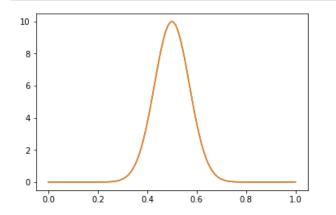
Fonctions de calcul basiques

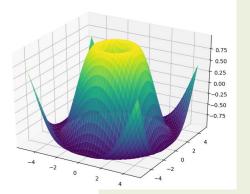
Matplotlib Tracé

(voir matplotlib pour toutes les options de graphes prévoir plusieurs soirées !)

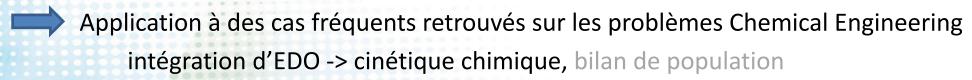
```
from numpy import *
In [11]:
         x= linspace (0.,1., 100)
          f = 10.*exp(-((x-0.5)/0.1)**2)
          print f
            1.38879439e-10
                              3.77474939e-10
                                              1.00525455e-09
                                                                2.62302071e-09
            6.70602464e-09
                             1.67983382e-08
                                               4.12292325e-08
                                                                9.91475372e-08
            2.33612654e-07
                              5.39322510e-07
                                              1.21994003e-06
                                                                2.70374774e-06
                                                                5.31929936e-05
            5.87126398e-06
                             1.24920812e-05
                                              2.60420842e-05
            1.06456180e-04
                             2.08749322e-04
                                               4.01067085e-04
                                                                7.54999601e-04
            1.39256082e-03
                              2.51663004e-03
                                               4.45617596e-03
                                                                7.73113109e-03
            1.31420010e-02
                             2.18885859e-02
                                              3.57200177e-02
                                                                5.71141054e-02
            8.94772943e-02
                             1.37347279e-01
                                              2.06568943e-01
                                                                3.04402171e-01
            4.39509449e-01
                             6.21765240e-01
                                              8.61831599e-01
                                                                1.17045882e+00
            1.55749843e+00
                              2.03065828e+00
                                               2.59408275e+00
                                                                3.24689734e+00
            3.98190635e+00
                             4.78466215e+00
                                               5.63312339e+00
                                                                6.49807924e+00
            7.34443672e+00
                             8.13335512e+00
                                              8.82508158e+00
                                                                9.38221701e+00
                                                                9.77304662e+00
            9.77304662e+00
                             9.97452490e+00
                                              9.97452490e+00
            9.38221701e+00
                             8.82508158e+00
                                               8.13335512e+00
                                                                7.34443672e+00
                                                                3.98190635e+00
            6.49807924e+00
                             5.63312339e+00
                                              4.78466215e+00
            3.24689734e+00
                             2.59408275e+00
                                              2.03065828e+00
                                                                1.55749843e+00
            1.17045882e+00
                              8.61831599e-01
                                               6.21765240e-01
                                                                4.39509449e-01
            3.04402171e-01
                             2.06568943e-01
                                              1.37347279e-01
                                                                8.94772943e-02
                                                                1.31420010e-02
            5.71141054e-02
                             3.57200177e-02
                                              2.18885859e-02
            7.73113109e-03
                              4.45617596e-03
                                              2.51663004e-03
                                                                1.39256082e-03
            7.54999601e-04
                              4.01067085e-04
                                              2.08749322e-04
                                                                1.06456180e-04
            5.31929936e-05
                              2.60420842e-05
                                              1.24920812e-05
                                                                5.87126398e-06
                                                                2.33612654e-07
            2.70374774e-06
                             1.21994003e-06
                                              5.39322510e-07
            9.91475372e-08
                              4.12292325e-08
                                              1.67983382e-08
                                                                6.70602464e-09
            2.62302071e-09
                             1.00525455e-09
                                              3.77474939e-10
                                                                1.38879439e-10]
         import matplotlib.pyplot as plt
          plt.plot (x, f)
```

plt.show()





- Modules de calculs scientifiques
 - Solveur optimize
 - Bisect
 - Newton
 - <u>fsolve</u>
 - Interpolation <u>interpolate</u>
 - Integration <u>integrate</u>
 - Equation différentielle ordinaire <u>odeint</u>



intégration d'EDO + shooting method -> colonne à contre courant, convection-diffusion-réaction

d/amplications 2

Conseils pour la programmation

- 80 % des problèmes viennent d'une physique incorrecte : importance d'un modèle (équations + conditions limites) bien posé
- Appliquer le principe KISS (keep it as simple as possible) et compliquer la simulation progressivement (ajouter les ingrédients progressivement)
- Pensez à vérifier votre code régulièrement en l'exécutant (pour identifier facilement des erreurs liées à vos derniers changements)
- Ne pas désespérer : debugger fait partie de la programmation

Une citation bien adaptée à la programmation :

Le succès consiste à aller d'échecs en échecs sans perdre son enthousiasme

Winston Churchill

Racine de la fonction $x^3-2x^2=x^2(x-2)$

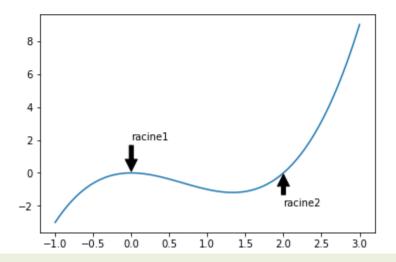
Recherche de racine

```
import matplotlib.pyplot as plt
import numpy as np
def f(x):
    return (x**3)-2*(x**2)
x=np.linspace(-1,3,100)
plt.plot(x,f(x))

from scipy.optimize import newton
x1=newton(f,x0=1.)
x2=newton(f,x0=3.)
print x1
print x2
plt.annotate('racine1', xy=(x1, 0), xytext=(x1, 2),arrowprops=dict(facecolor='black', shrink=0.05),)
plt.annotate('racine2', xy=(x2, 0), xytext=(x2, -2),arrowprops=dict(facecolor='black', shrink=0.05),)
plt.show()
```

-1.82851760603e-08

2.0



Succession de deux réactions chimiques de premier ordre

$$A \stackrel{k_1}{\rightarrow} B \stackrel{k_2}{\rightarrow} C$$

$$\frac{\frac{dA(t)}{dt} = -k_1 A(t)}{\frac{dB(t)}{dt}} = k_1 A(t) - k_2 B(t)$$

$$\frac{\frac{dC(t)}{dt}}{dt} = k_2 B(t)$$

```
In [27]: from numpy import *
                                                Résolution en 6 lignes de code!
         from scipy import integrate
          k1, k2=1.,1.
          def dX dt(X, t=0):
             return array([-k1*X[0],k1*X[0]-k2*X[1],k2*X[1]])
          t = linspace(0, 5, 100)
                                                # conditions initiales
         X0 = array([1, 0, 0])
          X, infodict = integrate.odeint(dX dt, X0, t, full output=True)
          infodict['message']
Out[27]: 'Integration successful.'
         import matplotlib.pyplot as plt
          [A,B,C]=plt.plot (t, X)
          plt.legend([A,B,C],["A","B","C"], loc='best')
          plt.xlabel ('temps')
          plt.ylabel ('concentration')
          plt.show()
            1.0
            0.8
          concentration
            0.6
            0.2
            0.0
```


Application 1 : réacteur d'ozonation

Cinétique de production d'ozone : $3O_2 \xrightarrow{k} 2O_3$

$$-\frac{\varepsilon}{V}\frac{dn_{O_2}}{dt} = k[O_2]^{\frac{3}{2}}$$
 , $n_{O_2} = n_0(1-x)$, $\varepsilon = -\frac{1}{3}$

$$\frac{dx}{dt} = -\frac{k}{\varepsilon} \left(\frac{n_0}{V_0}\right)^{1/2} \frac{(1-x)^{3/2}}{(1+\varepsilon x)^{1/2}}$$

- 1- Tracer le taux de conversion en fonction du temps
- 2 -Trouver le temps pour atteindre 99% de conversion

• Solution:

http://nbviewer.jupyter.org/ url/www.patricebacchin.fr/p ython/Ozonation.ipynb

```
from numpy import *
from scipy import integrate
k1, c0, eps =0.316, 40.09, -1./3. # mol-1/2.m-3/2, mol.m-3,
kc=-k1*(c0**0.5)/eps
def dX_dt(X, t):
    return kc*((1-X)**1.5)/((1+eps*X)**0.5)
t = linspace(0, 3, 100)
                                 # conditions initiales
X, infodict = integrate.odeint(dX_dt, X0, t, full_output=True)
infodict['message']
'Integration successful.'
import matplotlib.pyplot as plt
plt.plot (t, X )
plt.xlabel ('temps (min)')
plt.ylabel ('oxygen conversion')
plt.show()
  0.8
  0.6
 E 0.4
  0.2
  0.0
                        temps (min)
cible=0.99
def dt_dX(X):
    return 1./(kc*((1-X)**1.5)/((1+eps*X)**0.5))
tb=integrate.quad(dt_dX, 0, cible)[0]
print tb, 'min
2.50723379771 min
plt.plot (t, X)
plt.xlim((2,3))
plt.ylim((0.98,1))
plt.xlabel ('temps')
plt.ylabel ('oxygen conversion')
plt.annotate(cible, xy=(tb, cible), xytext=(tb-0.2, cible),arrowprops=dict(facecolor='red'),)
plt.annotate(tb, xy=(tb, cible), xytext=(tb, cible-0.005),arrowprops=dict(facecolor='red'),)
plt.show()
  1.0000
  0.9975
  0.9950
  0.9925
  0.9900
  0.9875
                                2.50723379771
  0.9850
  0.9825
                                  2.6
```


Convection-diffusion-réaction

Un problème classique en génie chimique : réacteur piston, transport de polluant dans un sol ou une rivière mais aussi une membrane catalytique, une dialyse avec adsorbant ...

$$\frac{dc}{dt} = -\frac{dj}{dz} - kc$$
$$j = uc - D\frac{dc}{dz}$$

$$c = c_0 z = 0$$
$$\frac{dc}{dz} = 0 z = \delta$$

Système de 2 EDO

$$\frac{dc}{dz} = v$$

$$\frac{dv}{dz} = \frac{u}{D}v + \frac{k}{D}c$$

$$\frac{d\hat{c}}{d\hat{z}} = \hat{v}$$

$$\frac{d\hat{v}}{d\hat{z}} = Pe\hat{v} + Ha^2\hat{c}$$

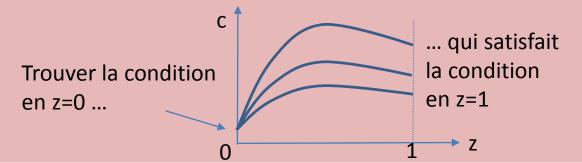
$$\hat{c} = \frac{c}{c_0}$$
 $\hat{z} = \frac{z}{\delta}$ $Pe = \frac{u\delta}{D}$ $Ha^2 = \frac{k\delta^2}{D}$

Méthode du tir ou Shooting method

Souvent, les 2 conditions limites s'appliquent aux extrémités du domaine.

Les intégrations doivent s'effectuer avec 1 condition limite fixée de façon aléatoire en z=0 puis déterminée par itérations pour respecter la condition limite en z=1

Intégration **–odeint**- (tir) avec différents $\frac{dc}{dz}|_{z=0}$ puis trouver par optimization **–newton**- la condition en z=0 qui permet d'avoir la condition souhaitée en z=L



Application 2: convection-diffusion-reaction

1- Ecrire le code pour la résolution numérique en régime permanent pour les conditions suivantes

$$c = c_0 z = 0$$
$$\frac{dc}{dz} = 0 z = \delta$$

2 -Trouver la concentration en sortie pour un Péclet de 1 et un nombre de Hatta de 2

Convection-diffusion -réaction

Valeur
$$\frac{dc}{dz}|_{z=1}$$
 souhaitée

Valeur
$$\frac{dc}{dz}|_{z=0}$$
 arbitraire

Fonction cible retournant après intégration $\frac{dc}{dz}|_{z=1}$ calculée - souhaitée

Optimisation pour trouver $\frac{dc}{dz}|_{z=0}$ afin que la function cible soit nulle

http://nbviewer.jupyter.org/url/patricebacchin.fr/python/convection-diffusion-reaction-2.ipynb

```
# Convection-diffusion-reaction (first order) equation at steady state
# Shooting method to solve the problem for boundary conditions at both end
from numpy import *
from scipy import integrate
from scipy import optimize
Pe, Ha=1.,2.
C0=1.
dC1=0.
n=100
z = linspace(0, 1, n)
#Set of ordinary differential equations
def dX dt(X, z):
   return array([X[1],Pe*X[1]+Ha*Ha*X[0]])
dC0 try=-Pe
# function giving the gap between dc/dz/z=1 and the targeted boundary conditions
def cible(dC0 try):
   X0 = array([C0, dC0 try]) # boundary conditions at t=0
   X, infodict = integrate.odeint(dX_dt, X0, z, full_output=True)
    return X[n-1,1]-dC1
#find the dc/dz/z=0 to have a cible=0
dC0 found=optimize.newton(cible, dc0 try)
print "Solution found for dc/dz z=0 at", dc0 found
X0 = array([C0, dC0 found])
X, infodict = integrate.odeint(dX_dt, X0, z, full_output=True)
print "c|z=0 = ", X[0,0], " c|z=1 =", X[n-1,0]
print "dc/dz|z=0 =", X[0,1], " dc/dz|z=1 =", X[n-1,1]
Solution found for dc/dz z=0 at [-1.52124686]
c | z=0
         = 1.0
                            c | z=1
                                      = 0.334411336713
dc/dz|z=0 = -1.52124686145 dc/dz|z=1 = 1.88003432267e-12
```


Convection-diffusion -réaction

Tracé de la solution numérique

Comparaison aux solutions analytiques publiées pour un ordre un :

$$c = c_0 z = 0$$

$$\frac{dc}{dz} = 0 z = \delta$$

Applications aux membranes catalytiques Gu, Y., Bacchin, P., Lahitte, J. F., Remigy, J. C., Favier, I., Gómez, M., ... & Noble, R. D. (2017). Catalytic membrane reactor for Suzuki-Miyaura C- C cross-coupling: Explanation for its high efficiency via modeling. *AIChE Journal*, 63(2), 698-704.

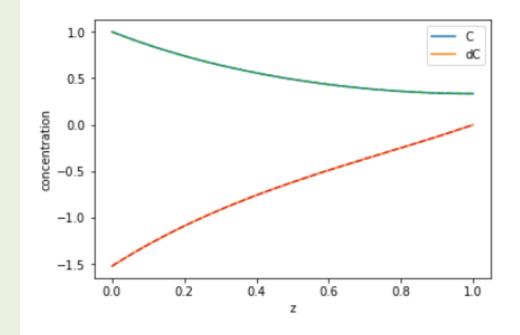
$$egin{array}{ll} c = c_0 & \mathrm{z} = 0 \\ c = c_1 & \mathrm{z} = \delta \end{array}$$

Applications à la dialyse avec absorbant Snisarenko, D., Pavlenko, D., Stamatialis, D., Aimar, P., Causserand, C., & Bacchin, P. (2017). Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality. *Chemical Engineering Research and Design*, 126, 97-108.

```
import matplotlib.pyplot as plt
[C, dC]=plt.plot (z, X)

#analytical solution
delta=(Pe*Pe+4*Ha*Ha)**0.5
c=exp((Pe-delta)*z/2.)/(1-(Pe-delta)*exp(-delta)/(Pe+delta)/(Pe-delta)/2.)*exp((Pe-delta)*z/2.)/(1-(Pe-delta)*exp()/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-delta)/(Pe-d
```

-1.52124683975



S Application 3 : colonne à contre-courant

Equilibre

Y = KX

Transfert local (change suivant la hauteur)

$$N = -k_{gl}(X - Y/K)$$
 $\frac{1}{k_{gl}} = \frac{1}{k_X} + \frac{1}{(K.k_Y)}$

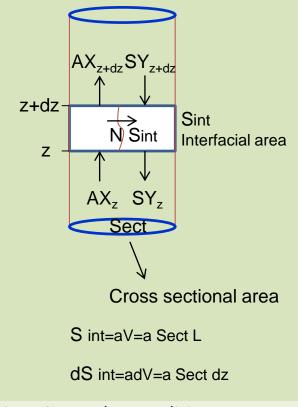
Differential mass balance

Entrée – Sortie = 0

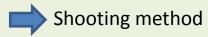
$$AX - A(X + dX) - Nd$$
Sint = 0
 $A(Y + dY) - AY + Nd$ Sint = 0

$$A \frac{dX}{dz} = -k_{gl}(X - Y)$$
 a Sect Conditions limites $Y = 0$ $Z = L$

$$S \frac{dY}{dz} = -k_{gl}(X - Y)$$
 a Sect $X = X = X = 0$



Problème 2 EDO avec les conditions limites sur 2 bornes décalées



Ou approche ingénieur NUT/HUT

```
Contre-courant
X | z=0
                                X | z=1
                                            = 0.675956814442
           = 1.0
Y|z=0 = 0.658086371115 Y|z=1 = 0.01
A(X0-X1) 6.48086371115e-06 S(Y1-Y0) -6.48086371115e-06
Efficacité dans le raffinat 0.325671543274 d'extraction 0.325671543274
   1.0
   0.8
 concentration
   0.4
   0.2
   0.0
            0.25 0.50 0.75
                             1.00
                                  1.25
                                       1.50 1.75 2.00
Co-courant
X | z=0
                                            = 0.714660643197
           = 1.0
                                X | z=1
Y|z=0 = 0.01 Y|z=1 = 0.580678713606
A(X0-X1) 5.70678713606e-06 S(Y1-Y0) 5.70678713606e-06
   1.0
   0.8
 concentration
   0.6
   0.4
   0.2
   0.0
            0.25 0.50 0.75 1.00
                                  1.25 1.50 1.75 2.00
```

```
# Shooting method to solve the problem for boundary conditions at both end
from numpy import *
from scipy import integrate
from scipy import optimize
kx, ky=1.e-4, 1.e-4
K=2.
sect, a = 0.001,100.
A, S= 0.00002, 0.00001
X_0, Y_1 = 1., 0.01
n=100
L=2
z = linspace(0, L, n)
#Set of ordinary differential equations
def dX dz(X, z):
   kgl=1./((1./kx)+(1./(ky*K)))
   N=-kgl*(X[0]-X[1])*sect*a
   return array([N/A,N/S])
Y0 try=1.
# function giving the gap between dc/dz/z=1 and the targeted boundary conditions
def cible(Y 0):
    X0 = array([X 0, Y 0])
                                 # boundary conditions at t=0
   X, infodict = integrate.odeint(dX dz, X0, z, full_output=True)
    return X[n-1,1]-Y_1
#find the dc/dz|z=0 to have a cible=0
Y0 found=optimize.newton(cible, Y0 try)
X0 = array([X 0, Y0 found])
X, infodict = integrate.odeint(dX_dz, X0, z, full_output=True)
print "Contre-courant"
print "X|z=0 = ", X[0,0], "
                                         X|z=1 =", X[n-1,0]
print "Y|z=0 =", X[0,1], " Y|z=1 =", X[n-1,1]
print "A(X0-X1)",A*(X[0,0]-X[n-1,0]),"S(Y1-Y0)", -S*(X[0,1]-X[n-1,1])
print "Efficacité dans le raffinat", (X[0,0]-X[n-1,0])/(X[0,0]-(X[n-1,1]/K)), "d'extrac
import matplotlib.pyplot as plt
[X, Y]=plt.plot (z, X)
plt.legend([X, Y],["X","Y"], loc='best')
plt.xlabel ('z')
plt.ylabel ('concentration')
plt.show()
# Transfert in a co-current column
# Shooting method to solve the problem for boundary conditions at both end
#Set of ordinary differential equations
def dX_dz_co(X, z):
    kgl=1./((1./kx)+(1./(ky*K)))
   N=-kgl*(X[0]-X[1])*sect*a
    return array([N/A,-N/S])
Y 0=Y 1
X0 = array([X_0, Y_0])
X, infodict = integrate.odeint(dX dz co, X0, z, full output=True)
print "Co-courant"
print |X|z=0 = ", X[0,0], "
                                         X | z=1
                                                 =", X[n-1,0]
print "Y|z=0 =", X[0,1], " Y|z=1 =", X[n-1,1]
print "A(X0-X1)",A*(X[0,0]-X[n-1,0]),"S(Y1-Y0)", -S*(X[0,1]-X[n-1,1])
```

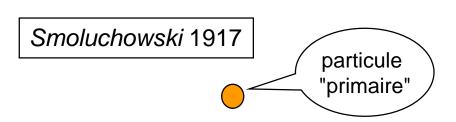
http://nbviewer.jupyter.org/url/patricebacchin.fr/python/Colonne.ipynb

Transfert in a counter-current column

Mécanismes d'agrégation

Agrégation et bilan de population

Problème : distribution de taille modifiée au cours du temps (approche précédente valide pour les premiers temps de l'agrégation)

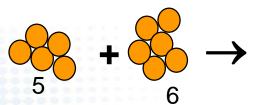


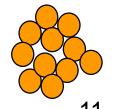
 n_i

 n_i = nombre de particules contenant i particules primaires

Il est nécessaire de tenir compte de l'agrégation d'agrégats!

Collisions entre 2 corps





constante de cinétique de 2^e ordre

Nombre de collisions entre particules de taille *i* et particules de taille j (m⁻³ s⁻¹)

$$\dot{\boldsymbol{n}}_{ij} = k_{ij} \boldsymbol{n}_i \boldsymbol{n}_j$$

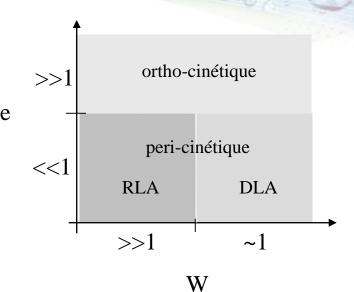
09/04/2018

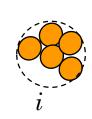
Mécanismes d'agrégation

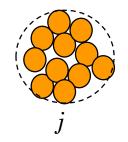
Comparaison des modes d'agrégation

$$Pe = \frac{F_{hydr}}{F_{br}} = \frac{6\pi\mu_w \dot{\gamma} a_i^3}{kT} \qquad \text{Pe}$$

$$=4.6.10^{18} \dot{\gamma} a_i^3$$







diffusion Brownienne (agrégation péricinétique), Pe <<1

$$k_{ij} = \frac{1}{W} \frac{2k_B T}{3\mu} \frac{(a_i + a_j)^2}{a_i a_j}$$

• mouvement du fluide (agrégation orthocinétique), Pe>>1

$$k_{ij} = \frac{4}{3}\dot{\gamma} \left(a_i + a_j\right)^3$$

sédimentation différentielle

$$k_{ij} = (\frac{2\pi g}{9\mu_w})(\rho_s - \rho)(a_i + a_j)^3(a_i - a_j)_3$$

Agrégation et bilan de population

$$\frac{d\mathbf{n}_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{i=k-1} k_{ij} \mathbf{n}_i \mathbf{n}_j - \mathbf{n}_k \sum_{k=1}^{\infty} k_{ik} \mathbf{n}_i$$

- •toutes les collisions sont "efficaces"
- •chaque agrégation est irréversible

collisions de particule de taille *i* avec particule de taille *j* pour former une particule de taille *k*

collisions de particules de taille k qui forment des particules d'autres tailles

$$\frac{d\mathbf{n}_{1}}{dt} = -k_{11}\mathbf{n}_{1}^{2} - k_{12}\mathbf{n}_{1}\mathbf{n}_{2} - k_{13}\mathbf{n}_{1}\mathbf{n}_{3}...$$

$$\frac{d\mathbf{n}_{2}}{dt} = \frac{1}{2}k_{11}\mathbf{n}_{1}^{2} - k_{12}\mathbf{n}_{1}\mathbf{n}_{2} - k_{23}\mathbf{n}_{2}\mathbf{n}_{3}...$$

$$\frac{d\mathbf{n}_{3}}{dt} = \frac{1}{2}k_{12}\mathbf{n}_{1}\mathbf{n}_{2} - k_{13}\mathbf{n}_{1}\mathbf{n}_{3} - k_{23}\mathbf{n}_{2}\mathbf{n}_{3}...$$

Concentration totale en particules:

$$\frac{dn}{dt} = -k_a n^2 \qquad \text{si } k_{ij} = k_{11} = 2k_a$$

$$n = \frac{n_0}{1 + k_a n_0 t}$$
 à $t = 0$: $n = n_1 = n_0$

Exemple à débugger!

```
# Transfert in a counter-current column
# Shooting method to solve the problem for boundary conditions at both end
from numpy import *
from scipy import integrate
from scipy import optimize
import matplotlib.pyplot as plt
                     #nombre de classe
nc=10
X0=zeros(nc)
dX dt array=zeros(nc)
k=zeros([nc,nc])
for i in range(nc):
    for j in range(nc) :
         k[i,j]=1.
X0[1]=1.
tf=1.
n=10.
t = linspace(0, tf, n)
#Set of ordinary differential equations
def dx dt(x, t):
    for ik in range(nc):
        dX dt array[ik]=0.
        for i in range(ik-1):
            dX_dt_array[ik]=dX_dt_array[ik]-(k[i,ik]*X[i]*X[ik])
            for j in range(nc):
                if i+j==ik:
                    dX_dt_array[ik]=dX_dt_array[ik]+0.5*(k[i,j]*X[i]*X[j])
    return dX dt array
X, infodict = integrate.odeint(dX_dt, X0, t, full_output=True)
print X
plt.plot (t, X)
plt.xlabel ('t')
plt.ylabel ('concentration')
plt.show()
```

http://nbviewer.jupyter.org/url/patricebacchin.fr/python/bilan de population.ipynb

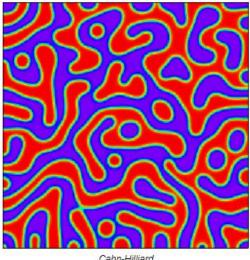
FIPY

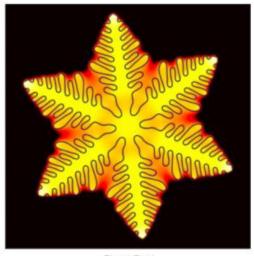
Résolution d'équations différentielles partielles EDP

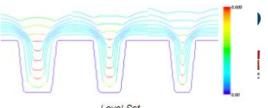
- Transport de matière en 2D-3D en instationnaire
- Navier Stokes

Exemples

Pour une future formation?







Références

- Documentation en ligne : <u>python</u>, <u>numpy</u>, <u>matplotlib</u>, <u>scipy</u>, <u>fipy</u>
- http://code.activestate.com/recipes/langs/python/
- https://docs.scipy.org/doc/scipy/reference/
- Tutoriel en Français: https://docs.python.org/fr/3/tutorial/index.html
- Pour le traitement de données : https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-tutor1-python-start.pdf
- Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3).
- Guyer, J. E., Wheeler, D., & Warren, J. A. (2009). FiPy: Partial differential equations with Python. Computing in Science & Engineering, 11(3).

Données

• Liste [,] : serie d'objets non nécessairement identiques

• Tuple (,): liste non modifiable

• Dictionnaire { , } : clé/valeur non ordonnées

Commandes de tests

If <condition>:

indentation

<commandes>

Elif < condition > :

<commandes>

Else:

<commandes>

Try:

<commandes>

Except <condition>:

<commandes>

Else:

<commandes>

Finally:

<commandes>

Commandes de boucles

While <conditions>:

<commandes>

Else:

<commandes>

Fonction

Classes et objets

Permet de réaliser une structuration spéciale de données (association de données et de fonction)

Outils intéressant pour structurer des concepts physiques et la logique de traitement

Class < nom>:

